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TEXAS INSTRUMENTS INCORPORATED
13500 North Central Expresswav
P.O. Box 6015
Dallas, Texas 75222

22 February 1974

SECTION |
INTRODUCTION

\aThc goal of this contract is to develop, fabricate, evaluate, and deliver to NVL thin-film
structures consisting of semiconductors having bandgaps on the order of 0.7 eV and compatit le
insulators. The following requirements are also goals:

High-field tunneling transport

Semiconductor surface passivation |

Semiconductor masking for diffusion and selective etehing ,
Surface charge transport

Antireflection coatings.

Activities of the program include semiconductor material preparation (GalnAs), insulator prepara-
tion, and characterization by both eclectrical and nonclectrical techniques of semiconductor-
insulator structures.

The primary semiconductor vehicles for this study have been GaSb and GalnAs, but early
work was done on germanium; silicon was used as a control substrate for insulator depositions
throughout the progran. \Present plans are to concentrate for the remainder of the program on
Gag sIng s As, which has \O.7-cV band-gap, and to continue to use silicon and germanium as a

eontrol substrate. \’__/_‘__

The emphasis in insulator preparation has been on low-termperature processing to prevent
degradation of semiconductor properties. Three techniques are being explored: reactive plasma
deposition (RPD) which is being used to deposit Al0Q,, SiO,, and SiN, ; liquid-phase anodization
for native oxides and sulfides: and plasma anodization also for native insulators.

1-1/1-2




SECTION 11
SEMICONDUCTOR PREPARATION (GalnAs)

As part of the investigation of semiconductor-insulator structures for the detection of
radiation in the range of | to 2 um, solid-solution alloys of GaAs and InAs wire chosen because
of the monotonic vai.ation from about 0.9 to 3.48 um of the bandgap of this alloy system.

Alloys of the composition Gag sIng. s As with a bandgap of ~1.7 um have been specifically
chosen for this investigation.

The matcerials program has centered about preparing this alloy composition by the diffcrent
techniques of vapor phase epitaxy. The first of these is synthesis of the alloys using an alioy of
gallium disolved in indium as the source for the Group Il elements. This system was used
because it was in operation at the beginning of the program. Modification of the system for the
growth of 50 percent alloy, both p- and n-type, was carried out and reported in the first
Semiannual Report™ on this contract. This reactor system is still being used for the preparation

of test materials. lts major disadvantage, however, is that graded epitaxial films cannot be made
in it.

It was recognized at the start that compositional grading would be essential for the
improvement of structural and electrical propertics of the alloys. Compositional grading allows
for reduced strain arising from the lattice mismatch between the GaAs substrate and the epitaxial
alloy film grown upon it. For this reason, a dual-source reactor, separate gallium and indium
reservoirs with separate HCl supplies, was designed and put into operation. Progress in the
growth of ~50 percent (Ga,In)As is discussed in the remainder of this section.

The dual-source reactor constructed for use on this program is shown schematically in
Figure 2-1. The chemistry o' the HCI-AsH; system has bee: described in the literatu-e(2.3)  Two
important differences have been incorporated into this reactor: a separate source of HCI gas to
prevent predeposition on the walls of the reactor in the region where the reagents mix, and an
exhaust system to prevent deposition in the cold section of the tube. This latter feature allows
for cleaning of tl. reactor in situ with HCI gas at high temperatures and minimizes contamina-
tion which might occur during disassembling and acid cleaning.

The preparation of (Ga,In)As alloys is complicated by the fact that the standard free
cnergies of GaAs and InAs differ by about 4 Kcal/mole at 750°C, with GaAs being higher. For
this reason, the deposition of GaAs is favored. To prepare a 50 percent alloy, ratios of In to Ga
in the gas phase must be 8.5 to 1. A graph showing the experimental results for various gas
composition is shown in Figure 2-2. Data from this graph were extracted from the literature(23).
The resalts of the present work correspond to the upper curve in the range of 5 to 50 percent
InAs alloys. Theoretical predictions of the relationship between gaseous and alloy composition
differ appreciably from experiment as shown ii, Figure 2-2. At an input ratio of 8.5, a theoretical
composition of about 68 percent should be observed instead of the S0 percent InAs actually
observed. This departure from theoretical has not been investigated; however, growth under these

conditions is probably a kinetically limited process. In this case, departures from theoretical are
not surprising.
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The outstanding problem in preparing alloys is compositional uniformity. A *2 percent
variation in the input ratio at 8.5 would result in a variation in composition from about 48 to
52 percent InAs in the solid. Variations of 2 percent are not uncommon, owing to instability of
flow control, transient reaction conditions, and poor mixing of the gaseous reactants.

The preceding discussion shows some of the problems and considerations associated with
preparing good (Ga,In)As alloys. The results of the first experiments in preparing graded ailoys
and the direction of future work based upon these considerations conclude this section.

Initial attempts at preparing abrupt heteroepitaxy similar to that grown in the alloy source
reactor were unsuccessful for compositions with InAs above 15 to 20 percent. The exact cause
of this difference is not understood. A sample from the alloy reactor was checked for variations
in In content from the substrate to air interfaces with the electron microprobe. No natural
grading owing to differences in reactivity of the In and Ga sources was observed. The samples
prepared in the dual-source system were granular with no apparent single crystal regions. If the
difference is not caused by grading, microscopic variations in composition of the depositing
material could account for the inferior structure. That better homogeneity would be expected
from the alloy source may account for the difference. This problem remains unsolved but has
not hampered continuation of the growth of high InAs content alloys.

To establish approximate growth conditions for growing graded alloy structures, manual
adjustment of the input gases was used. This procedure does not allow for continuou.: grading
but has been successful in the preparation of alloy of up to 50 percent InAs. The procedure is
first to grow a GaAs layer between 10 and 20 um thick, increase the HCI input to the In source,
and decrease it to the Ga source in steps to
a gas composition which corresponds to that
required to grow a given alloy composition.
Grading of about 2 percent InAs/um has
been used. A constant composition layer of
alloy from 20 to 40 um thick is then grown
over the graded layer. Growth conditions
used to prepare a 35 percent InAs graded
layer are given in Table 2-1. As seen in
Figure 2-3, a cross-hatched pattern owing to
the formation of misfit dislocations is
observed on a slice repaired using these con-
ditions. A cleaved and stained (A-B etch)
cross-section of the epitaxial layers is shown
in Figure 24. Here the steps in composition
are clearly observed in the graded region.
The variation of InAs content as determined
by the electron microprobe is shown in 689G VvEZI
Figure 2-5. Clearly, the gradation of compo- JIAING £ 5% STEEL
sition is not linear with distance. This non-
linearity is expected from the nonlinearity
of the input flow rates. Growth rates for the

various areas for this and similar runs were a‘@
observed to be 15 to 20, 10 to 15, and S to 173572
10 um/hr for the GaAs, graded region, and
the constant composition alloy region, Figure 2-3. Surface of Gag g 5lng 35As Epitaxial Film
2-3
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TABLE 2-1. GROWTH PARAMETERS FOR (Ga,In)As GRADED ALLOYS

Substrate Temperature 735°C
Ga and In Source Temperatures 850°C
AsH, (10%)/H, 90 — 245 cc/min
HCI (10%)/H; to In 0~ 165 cc/min
HCl (5%)/H; to Ga 160 -+ S0 cc/min
HCI (10%)/H; to Excess 25 cc/min
Final In/Ga = 6.6 Approximate Composition Gag ¢5Ing 35As
Rt

As

MAGNIFICATION 780X

173573

= 0.9 to 0.8 (Excess Arsenic)

a3

Gag.e5 !Ny, 3575

GRADED REGION

GaAs SUBSTRATE

Figure 2-4. Cleaved, Etched Cross-Section of Graded (Ga,In)As Epitaxial Film (InAs ~ 35 percent)

respectively. The variation of the InAs content across slice with an average composition of 9.1
percent InAs is shown in Figure 2-6. The variation across the slice is from 7.5 to 10.0 percent;
however, in the flow direction, it is only 8.5 to 9.4 percent. A sample of 35 percent InAs alloy
was angle lapped on a 54-degree angle and then stained with A-B to reveal etch pits associated
with dislocations. A count of these pits gave a density of slightly greater than 10®/cm. As yet,

no electrical evaluation of these films has been made.

From these experiments, conditions for growing graded, high InAs content alloys have been
established. No optimization of grading has been carried out. In the next stage of this develop-
ment, an improved grading system using reservoirs and mass flow controllers will be installed in
the system. These will provide for continuous grading and for better stability and control of the
input reactants. Electrical and structural evaluations of these materials will then be performed.
During the intervening period, the alloy source reactor will be used for materials supply.

2-4
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SECTION 111
INSULATOR PREPARATION AND CHARACTERIZATION

A. INTRODUCTION

Preparation of thin insulator films on semiconductors in this program was aimed at the
development of low temperature growth techniques. including primarily plasma deposition,
anodization in a liquid electrolyte and anodization in a gas discharge. Emphasis on low-
temperature processing is important because of the interest in using compound semiconductors.
such as Ga,Iny o As for the detection of 1 -2 um radiation. The shifting lattice defect equilib-
rium as well as the probability of impurity contamination (particularly from Cu) associated with
high-temperature processing of these materials creates substantial problems. As a result of the
process development in this program, both the plasma deposition and the anodization approaches
have been shown to be satisfactory growth techniques for high quality insulators with insulator
semiconductor interface properties suitable for the future fabrication of devices.

Appendixes A, B. and C are listings of the samples prepared during the program using each
of the three growth techniques. Because of the limited supply of Gig sIng s As, most of the
optimiz. tion of insulator properties was done using films grown on GaSb, Ge, or Si substrates.
Silicon substrates were particularly useful because variations in insulator properties can be
characterized without problems of extrancous variables from the substrate.

Appendix D lists samples that have been delivered to NVL for evaluation. Initially
insulator-semiconductor structures were delivered with metallized dot patterns on the insulator
surface to allow for electrical characterization. Later samples were delivered without these dots.
at the request of NVL. Thin film “emitter structures” for application in high field tunneling
experiments were also included among the deliverable items. Figure 3-1 shows the processing
steps used in the fabrication of these structures.

Of the plasma-deposited insulators, Al10, proved to be the most pronusing, principally
because of its high breakdown strength. The AlO, - Ge system was therefore chosen for
optimization during the last half of the program. This cffort led to the reproducible fabrication
of neurly pinhole-free A10, Ge structures which exhibited surface state densities in the
35X 10" em™? eV range.

Of the anodic insulators, those produced by anodization in i plusma provided the most
promising results, and optimization centered on oxidation and nitridation of Ge and
Ga,Iny , As. Insulators produced bv this technigue have few or no pinholes and, in the case of
GeO,, show reasonably stable electrical properties with surface state densities again in the
3-5X 10" em™2 eV range.

B. INSULATOR CHARACTERIZATION
Development and optimization of insulator-semiconductor systems for the program required
a complete nonelectrical characterization effort. This portion of the program included characteri-

zation of physical, chen.ical, and structural properties of most types of insulators, on a
continuing basis, to evaluate modifications to the growth techniques.

3-1




Physical properties which have been
examined for the insulators include thick-
ness, index of refraction, pinhole densities,
surface morphology, and substrate clean-
liness. Ellipsometry (or talystepping), optical
microscopy, scanning electron microscopy,

, and electrophoretic pinhole detection have

PEPOSIT ~5,000 A sio, been used routinely to measure these prop-
FROM A PLASMA

erties. The chemical composition measure-

ments were made to determine bulk consti-

Sio, tuents in the insulators, stoichiometric

variations, and trace Impurity content.

Techniques used included ion-backscuttcriug,

,._ o Auger analysis, X-ray ciffraction, and

neutron activation analysis. Structural char-

acteristics were examined primarily to

(@) i determine the type of bonding in the

amorphous insulators and to detect crystal-

linity. Infrared absorption spectra have been

(A) Si

ETCH CIRCULAR HOLES IN THE analyzed for the bonding studies, and pro-
i 3.5 MILS AND 41 MILS ! :
ms;)?img'rssn. USING DILUTE HF, longed X-ray exposure of insulators in a

Debye-Scherrer camera has been used to

INSULATOR 510, look for crystallinity.

C.  REACTIVE PLASMA DEPOSITION

1. Silicon Nitride

Reactive plasma deposition is a chemi-

© L) cal vapor deposition (CVD) method of
producing thin filins of dielectric insulators.

DEPOSIT THIN (~500 A) INSULATOR It differs from ordinary CVD in that all or
173576  CVER ENTIRE SURFACE, part of the energy necessary to initiate the
reaction is provided by the collisional excita-

Figure 3-1. Emitter Structure tion obtained in a low-pressure discharge of

the reactant gases. Although plasma poly-

merization of organic compounds? is a well-
known process with a long history, the process for depositing inorganic films, particularly silicon-
nitrogen compounds, was first reported in 1965 by Sterling and Swann.$

Organosilicon films formed by an RF plasma polymerization process® have been found to
be useful as dielectric waveguides for integrated optical devices. Interest in the inorganic films,
however, has been concerned primarily with their possible uses as insulators for various types of
electronic and semiconductor devices. Most significant to this application is the fact that films
may be deposited at low temperatures, precluding the need for special constraints on substrate
conditions. Thus, it is possible to deposit high-quality dielectric films on materials that cannot,
for one reason or another, be subjected to high temperatures. In addition, the RPD method

3-2




A simple form of reactor for the deposition of thin films, either by ordinary CVD or by
RPD, consists of a horizontal tube through which the gases are allowed to flow. For some types
of reactions, it is possible to stack material, such as silicon slices, so that they fit into the tube
with their faces perpendicular to the tube axis. It is much more common in CVD reactors,
however, to have material lie flat with the face to be coated parallel to the direction of the tube
axis, which is also the direction of gas flow. This geometry also provides a simple means of
obtaining uniform RF-excited glow discharges and is shown in Figure 3-2. Apparatus similar to
this has been used to devosit a variety of films. The three most widely investigated materials are
silicon nitride, silicon oxide, and aluminum oxide.

Silicon nitride (or, more properly, polysilazane) a, deposited by RF plasma techniques is a
glassy, completely amorphous material the properties of which depend on the composition of the
reactant guses and the temperature of deposition. An excellent description of the nature of these
glassy silicon-bascd compounds has been given by Phillip.”-8 Basically the structure of these
materials is believed to consist of Si tetrahedra of the type Si-(SixOyN,) with x, y, and z
determined in a statistical manner from the concentrations of the respective species in the gas
phase.

The silicon nitrides used in this study have been grown from gas m’«tures containing
SiH4:N; :NH; :Argon in various ratios. The particular ratio depends on the temperature of the
deposition and the desired refractive index of the film. Table 3-1 is a compilation of the gas
composition used to obtain a refractive index of 2.0 at temperatures ranging from 100° to
350°C. Values given are the fraction of the total gas flow for cach component.

164351

Figure 3-2. Tube Reactor With Square Insert Tube and Gas Block

33




TABLE 3-1. GAS COMPOSITION TO OBTAIN REFRACTIVE INDEX OF 2.0

Temperature
, (9] SiH, N, NI, Ar
I J 100 0.021 0.483 0.011 0.485
250 0019 0454 0.016 0510
300 0018 0427 0.021 0.534
350 0017 0.401 0026 0.555

It is significant that the amount of ammonia needed to produce material with an index near

2.0 increases substantially as the substrate temperature used during deposition is increased from

100°C to 350°C. It may be correlated with the increase in density of the films. Figure 3-3 shows

| the density of the films as determined by weighing a known thickness as a function of the
, substrate temperature during deposition. It is well-known that the refractive index of nitrides or
oxides increases as the silicon content of the film exceeds the stoichiometric concentration. The

refractive index, n, also depends linearly on the density, p, of the fiims according to the relation.

R } : pi B R,
n? + | W.

1

In this expression, R; is the bond refractivity of the ith type of bond, B, is .he bond
' fraction, and W, is the molecular weight, The summation is taken over all types of bonds present

3 2.8 r
2,6 [~
t
o 2,4 -
~
U
E
o
z 2.2 o
)
a
2,0 [~
1.8 |-
] ] ] J
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' 164352

Figure 3-3. Density of Si,N, Plasma-Deposited Films as a Function of Deposition Temperature
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in the material. For exaruple, for SiyN,, the bond refractivity, R,, refers only to the Si-N bond
and has a value computzd to be 1.93; B, = i2 and Wsi, N, = 140. The value of K for an Si-Si
bond is considerably greater, being about 5.9. Thus, small excesses of silicon can substantially
increase the refractive index. For films prepared at the lower temperature, the silicor. content for
fix:d refractive index is expected to be greater than for filrus prepared at higher teinperatures
since the density is less. The density of the films prepared in this manner compares very
favorably with that of those reported by Meyer and Scherber® for plasma-Ceposited nitrides
made from silane and N,.

Silicon oxides (polysiloxanes) have been prepared for evaluation as insulators in a manner
similar to that for the nitrides but with different gases. Originaliy, a silazie:argon-nitrous
oxide:nitrogen conposition was used. This system has the advantage that the structure of films is
relatively insensit ve to the gas composition, if the nitrous oxide concentration exceeds about 10
percent of the nitrogen concentration. An oxygen-containing gas is used (rather than pure O;?
which does not react with silane except in the region in which the glow is established. It wds
observed that, when the oxygen containing gas was N, O, there was always a small homogeneous
reaction that produced a fine powdery silica product. This product was detrimental to the
vacuum pumps used and is also believed to produce powdery deposits that lead to pinholes. It is
not known if the homogencous (gas phase) reaction is a true small but finite reac.jon rate
between the silane and the N,O, if it is caused by a thermally induced decomposition of the
N,O and subsequent reaction between the SiH, and the resultant O,, or if it is a result of
impurities ir the N,O0 which zan be obtained only in medical grade. Mass spec:rometer
measurements failed to reveal the presence of free O, in the bottled gas; the major impurity was
identified as argon. The Matheson Gas Data book, however, lists the principal impurity as being
about 1.5-per:ent air which would explain the small homogeneous reac’ions observed.

To avoid the possible complications of the homogeneous reaction, the oxygen-bearing gas
was switched to instrument grade CO,, a 99.99-percent minimum purity. No homogeneous gas
reaction hus been observed with this system. Use of CO, is complicated by the fact that film
stoichiometry, as indicated by refractive index measurements, is much more sensitive to gas
concentrations. Very high CO,:SiH, ratios are needed to produce films with indices near 1.46,
the accepted value for silica. For these films, the ratio SiH4 :Ar:CO, = 0.008:0.146:0.846. I: is
possible with this system to produce films with widely varying amounts of silicon, going all the
way from amorphous silicon to a subsilicon oxide. The structure of these films has also been
discussed by Phillip.” Impurity content of both SiO, and SiN, films was examined by neutron
activation analysis. Results are shown in Table 3-2.

Film-density measurements have been made only for oxide films prepared at a substrate
temperature of 300°C. The measured value is 2.18 gms/cm® which compares favorably with the
accepted value of 2.21 gms/cm?® for fused silica.

2. Aluminum Oxide

One arca of considerable success in the program has been the deposition of aluminum
oxide. Films with uniform thickness, uniform density and dielectric constant, and low pinhole
densities have been achieved. In the interim report on this contract, we reported developing RF
plasma deposited aluminum oxide which had the stoichiometry of Al,0; within the accuracy of
our measurement technique (i.e., 2 percent). During the latter half of 1973, our efforts have
been devoted toward characterizing the physical properties of this insulator and developing
techniques to make it technologically useful.




TABLE 3-2. NEUTROM ACTIVATION ANALYSIS IMPURITY CONCENTRATIONS

Na Cu As Sb Au Br Ga

Units (atoms/cmn®)

D tection Limits 0.1 0.3 0.05 0.05 1 0.1 04
SiNy
Mean 13.7 36 0.28 0.95 <1 1.3 <04
Standard Deviation 39 24 0.12 0.46 04
Probable Error (68 percent) 2.6 1.6 0.08 0.31 03
S10,
Mean 26.5 28.8 0.80 0.14 <1 28 <04
Standard Deviation 7.1 16.9 0.18 0.09 0.7
Probable 1:rror (68 percent) 4.8 11.4 0.12 0.06 0.5
Control Samples
Mean 43 3.0 1.8 6.6 1.0 1.0 <04
Standard Deviation 4.7 1.3 22 9.8 04 09
Probable Error (68 percent) 32 1.5

These activities were not in general separable; for in order to be technologically useful, the
propertics of the insulator must be reproducible. Two measures we have chosen to evaluate the
reproducibility of the insulator are index of refraction and low frequency dielectric constant.
These properties are not, of course, independent. In fact, the index of refraction is merely the
square root of the high frequency diclectric constant. In what follows, we shall concentrate on
the static diclectric constant because it reflects not only electronic polarization but also ionic
polarization and hence is expected to be a more sensitive measure.

Recalling that

|
et B TR (3-1)

where € is the static dielectric constant, v a factor which depends on choice of units, and A and
« are the ionic and electronic polarizability per unit volume, respectively,'® we can write

2pprley +2) +pyley — 1)

€ pr = - — 3-2
! P €y — 1) — ppy (e — 1) i

where €p and e arc the dielectric indices of the bulk and deposited film and pg and ppp are
the densities. Navias'' has measured the dielectric index of a pure Al 05 ceramic of density
3.788 to be 9.25. We have measured the density of plasma deposited aluminum oxide to vary
from 2.4 g/cm® to 3.0 g/cm® as the temperature of the substrate during deposition was varied
from 300°C to 550°C. If we choose 2.9 g/em?® as a typical value for material deposited at
400°C, we calculate, from Equation (3-2), epr = 4.82.

The dielectric constant of the insulator was determined from measurement of MIS capaci-
tors biased with the semiconductor surface accumulated. Some care is necessary in this technique
to ensure that the surface is really accumuiated and that leakage current is not distorting the
measured values of capacitance. Measurement on eight slices from two different depositions
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yiekded a mean value for the diclectric index of 4.66 with a variance of 0.31, a result in
rcasonable agreement with the catculated value. It should be pointed out that the variance in
measured diclectric constant arises at least in part from variation in oxide thickness across a slice,
since the thickness is typically measured at only one point on the slice where changes in

interference color indicate that thickness variation of up to 10 percent may be seen over g
distance of ~ 2 ¢m on a slice.

It was recognized in the interim report that pinholes in the deposited insulators were a
major obstacle to technological application of these films. As a result of this, a determined effort
was undertaken to identify and eliminate the cause of these pinholes. It was established that, for
the case of plasma deposited AL, O, most of the pinholes were a result of contamination of the

surface. It was Turtier established that the procedure described in Table 3-3 drastically reduced
the pinhole count.

TABLY 3-3. SURFACE PREPARATION PROCEDURE

5 minutes boiling xylene l
5 minutes boiling methanol Remove organic contami .anis
5 minutes boiling isopropanol

Rinse in de-ionized water

Eieh the semiconduclor 1o remove ~1 um of material

Rinse in de-ionized waler for 30 minules

Blow the suinple dry with filtered N, ina class 110 cleanroom

Load the samples onlo the graphile holder and piace the holder
mto a sealed glass container while in cleanroom

Shde 1he holder from the container into The deposition apparalus
and immedialely evacuate.

Measurements of pinhole densities were performed, using a variety of techniques including
scanning clectron microscopy and selective ctching, but the most reliable results were obtained
using a “Navionic Dielectric Defect Detector.” The apparatus consists of a gold-plated dish filled
with methanol, to which the semiconductor slice makes contact. A copper ring is used as the
anode and is placed 0.76 mm above the insulator surface. The semiconductor serves as the
cathode of an clectrophoretic cell so that, when a potential of about 1 volt is applied,
preferential conduction occurs at any pinholes in the insulator, and gas bubbles cvolve at these
points. A microscope with calibrated grid is used to provide a count of pinholes per unit area.
Translation controls are available so that an entire sample surface may be examined. Theoreti-
cally, pinholes as small as 0.1 um should be detectable with such a system.

The histogram in Figure 34 shows the pinhole densities per 10 mm? measured on a number
of slices after the above procedure was instituted. Note that zero pinholes indicates that no
pinholes were found over an entire slice of ~3 em? surface area. Thus, 41 percent of the slices in
this sampling had no pinholes. These data are typical of those we have obtained since instituting
this procedure and compare favorably with the state-of-the-art for thermally oxidized Si.

lon backscattering analysis was used to determine the stoichiometry of the AlO, films.
Stoichiometric ratios of the deposited layers calculated from the backscattering analyses are given
in Table 3-4 as a function of temperature and gas ratio. The accuracy of the stoichiometric ratios
is | percent. The measured indices of refraction are also given. Note that the refractive index
increases monotonically with increased value of the ratio [Al}/[O]. Note also that stoichiometric
ratios cluster closely about the value 0.667 2xpected for aluminum oxide.
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Figure 3-4. Histogram of Pinhole Densities in AlO,

TABLE 3-4. STOICHIOMETRIC RATIOS OF THE DEPOSITED LAYER
CALCULATED FROM BACKSCATTERING ANALYSES

TMA/N,O
1/10 1/20 1/40 1/80
Temperature

560°C Al}/{o] = 0.739
n=1703

400°C |All/lo} = 0.675 [All/{O} = 0.657 {Al}/10] = 0.691
n=1.643 n=1593 n=1678

290°C IAl}/10] = 0.633
n=1.526

D. LIQUID PHASE ANODIZATION

Anodization uses an electric field assisted reaction of oxygen with a solid to form an
insulating oxide film. Extensive reviews of the subject are available.'>!3  Anodization has been
studied extensively because of its importance in corrosion as well as in the fabrication of
insulator films for electrical components. The first field-effect transistor ever fabricated used an
anodic oxide film on Ge," but subsequent success in the growth of therma! oxides on Si made
anodization unnecessary.
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For growth of insulators on compound semiconducting materials, however, anodization
offers some distinct advantages:

It is a low-temperature process; high-temperature procesees lead to vaporization of the
more volctile group V species in 11i-V compounds, causing surface damage and
stoichtometric alterations in the semiconductor.

It offers inherently self-healing film growth. Pinholes which may develop in tiie
insulator become points of maximum electric field and are therefore eliminated
by more rapid insulator growth.

It climinates the original semiconductor surface from the final MIS structure. This ic an
advantage over deposited insulators, where structural damage and contamination
on the semiconductor surface lead to undesirable semiconductor-insulator inter-
face properties.

Studies conducted during this program have used both liquids and plasma as the clectrolytes
for anodization. Plasma anodization offers the distinct advantage of freedom from impurity
contamination, but is is a more difficult process to control than liquid anodization. Although the
use of a liquid electrolyte has been reported to result in deleterious electrical effects caused by
incorporation of water and OH ions in the films,’S methods are available for “baking-out’ these
contaminants; some anodic films show desirable insulator characteristics even without such a
process. !¢

Anodization of scmiconductors in oxidizing solutions has been reported for InSb,!7
GaAs.'® and GaP.'® The oxides formed on InSb in aqueous KOH solutions have been success-
fully used for field-effect devices.?® This type of anodization is the principal technique used in
Texas Instruments program, but a modification which has not been reported previouslty has wcen
used with some success. In the modification, solutions containing anions other than oxygen
(principally sulfur) have been used as clectrolytes. Such an approach provides a variety of
insulators, other than oxides, for evaluation in MIS structures.

The apparatus used for anodization is shown in Figure 3-5. The reference electrode serves to
counterbalance the solution potential and is made of the same semiconductor material as the
anode. The apparatus can be easily altered for operation at constant current, constant voltage. or
programmed ramp voltage.

Water, glycerine, and cthylene glycol have been used as electrolyte solvents. The latter two
are used in cases where anodization is to be done at large voltages, exceeding the decomposition
potential of water. Most anodic oxidation has been performed on GaSb, GalnAs, and Ge, using
approximately 0.1 N KOH dissolved in these solvents, although other oxidizing solutions, such as
NH;OH and H,0,, have also been used. Attempts to form sulfide films have been made with
Na, S and sulfurated K, CO; in the same solvents.

Variables that have been used to alter anodization characteristics include temperature.
anodization time, current or voltage condition, solute concentiation, and incident illumination.

Backsides of the semiconductor samples are normally muasked during the anodization either
with one of several types of photoresist or with black wax. Following anodization, the samples
are rinsed in organic solvents and water, and then characterized, using optical microscopy,
scanning clectron microscopy, and diclectric-defect detection (pinholes). Metal dots are normally
deposited on the insulator surface and the electrical characterization performed.
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Figure 3-5. Anodization Apparatus Wired for Constant Current Operation

The most notable results have been achieved on GalnAs using the 0.1 N KOH-cthylene
glycol clectrolyte, and on Ge using the sulfide solutions. Oxide films grown on GulnAs were
reproducible, and showed few or no pinholes and less than *3 percent thickness variation.
Capacitance-voltage measurements showed band bending in most cases and flatband voltages less
than 1 volt, with a hysteresis of similar magnitude. Auger analysis indicated the presence of
significant amounts of carbon in the anodic films, typically between § and 10 percent, in
addition to the 30 percent oxygen present. Since film resistivitics were less than 10" ohm-cm, a
low breakdown strength was typical in these samples, and was not significantly improved by
standard annealing treatments. It appears likely that the organic electrolyte is causing the carbon
contamination. For this reason, further investigation of this oxide was discontinued in the hope
that use of a plasma anodization process would maintain desirable cosmetic and electrical
properties while eliminating electrolyte contaminants and inc.casing film resistivity and stability.

Films formed on Ge in the sulfide soluticns showed flatband voltages less than | voit with
little or no hysteresis in the best cases, and resistivities as high as 10" ohm-cm. These insulators
degraded, however, after prolonged exposure to ambient conditions. In the better films, concen-

trations of approximately 3 percent each, of oxygen, nitrogen, and carbon, were found by Auger
analysis.

Here, again, it was decided that further development could best be performed by using a

plasma electrolyte to control impurity contamination and to provide protective insulator coatings
that could be deposited in situ after anodization
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Figure 3-6. Planar Process Development

Most of the anodic films have shown no resistance to acid attack, thus making the
patterning of Al for a surface planar process very difficult. Potassium iodide and potassium
ferricyanide were used io pattern Al on some of the anodic films, but these etchants appear to
degrade the electrical prorerties of the insulators. Planar processes were therefore developed for
these materials. Two of thc approaches are shown in Figure 3-6. la the first case, Al was
deposited on the insulator surface and then anodized in selec.od areas, by using a photoresist
mask, to produce the desired metallization pattern.

In the second case, a protective plasma-deposited SiO, layer was used and then standard
photoresist techniques were used to pattern the aluminum.

E. PLASMA ANODIZATION

Gaseous, or plasma, anodization has been used to produce many types of devices, including
capacitors, Josephsen junctions, MOS transistors, tunnel barriers, and others. A recent review of
the process is given by Dell’Oca, Pulfrey, and Young.?! Two different types of anodization
methods in plasmas are readily distinguished. In the first, a dc discharge is established with an
appropriate potential (this may be ecither a cold-cathode or a hot-cathode dischaige). The
material to be anodized is biased positively at a different voltage with respect to the plasma to
supply the anodization current. In the second method, an oxygen plasma is created by a
microwave discharge and the sample is placed in the afterglow, again with an appropriate bias.
Both of these techniques appear to have serious problems. In the dc technique, high voltages are
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Figure 3-7. Diagram of Plasma Anodizalion Apparalus

necessary as is a three-electrode system. The many regions of a dc glow discharge rcquire careful
sample placement if reproducible results arc to be obtained. Thus far, it appears as if a
microwave-supported discharge is not capable of uniform processing over a large enough sample
area to make it practical. A third method is that of using an RF-supported discharge to create
the plasma, with additional dc biasing to supply the anodization current. This last {echnique is
the one that has been investigated in this program. The experimental apparatus is shown
schematically in Figure 3-7. It is a simple modification of the apparatus used for plasma chemical
deposition. The conducting stice holder shown in Figure 3-2 is replaced with a quartz plate on
the bottom of which a thin platinum wire is strung. At severul points along the quartz, holes are
drilled and the platinum wire is extended to the upper surface whcre it serves as a contact to the
backside of a slice. When placed in the inner, rectangular cross-section tube, the platinum wire is
shiclded from the discharge by the quartz plate. A rectangular slot is cut into the upper section
of the inner rectangular cross-section tube and an aluminum plate is used for the other electrode.
A hole in this plate supports a platinum wire. which is brought to the top of plate and makes
contact with the outside world through the spring electrode. Th: RF generator and the dce bias
supply are isolated from each other by a filter network of passive circuit elements.

Growth of uniform films by plasma anodization was found to depend primarily upon
application of the dc bias uniformly over the sample. This was accomplished by depositing gold
over the entire backside of each sample and then using a silver paste to provide contact between
the platinum wire and the sample. Two-inch slices of Si, anodized using this technique, showed
less than +*3 percent thickness uniformity over the entire slice. The film resistivity and
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breakdown strength of the plasma-anodized SiO, was comparable to thermally giown SiO,, after
annealing 30 minutes at 450°C in a nitrogen gas flow.

Capacitance voltage measurements typically show flatband voltages less than 2 volts and
hysteresis less than 0.2 volt. Interface state densities, cxamined via conductance-voltage measure-
ments (see Section 1V), are in the 3 to 5§ X 10" cm™2 ¢V! range.

Anodic oxidation of Ge in the plasma was followed by plasma deposition of 200 A of SiO,
to protect the insulator from ambient effects. These structures show more hysteresis than the
anodized Si, being typically 1 volt, and show flatband voltages less than 2 volts and surface state
densities in the 3 to § X 10" ¢m™? eV! range after annealing. The SiO, overcoat effectively
protects the insulators from degradation caused by metal-patterning ctches and ambient effects.

Attempts to grow mitride insulators by plasma anodization of Ge revealed that the solubility
of GeO, in water is climinated if a few percent of nitrogen is incorporated in the material.
Nitrogen gas and ammonia were both used as sources of nitrogen in attempts to produce
insulators approximately GeyN, in composition. Thus far, attempts to increase nitrogen content
have resulted in films containing no more than 17 percent nitrogen, as determined by Auger
analysis of the insulators after sputtering off several angstroms of the films.

Attempts to grow GeS, compounds by plasma anodization, using a carbonyl sulfide gas
flow, resulted in films with up to 12 percent S. This process causes deposition of clemental
sulfur in the reactor, and some damage to the pumping system. Both the nitride and sulfide films
exhibit some carbon and oxygen contamination.
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SECTION 1V
ELECTRICAL MEASUREMENTS

A.  GENERAL PRINCIPLES

Flectrical  characterization has been  done chiefly by capacitance-voltage (C-V) and
current-voltage (1-V) measurements on metal-insulator-semiconductor (MIS) capacitors. When the
semiconductor is accumulated, the capacitance measured is that of only the insulator layer,

g (4-1)

where A is the area of the metal contact, K, is the diclectric constant of the insulator, and X, is
the insulator thickness. If the semiconductor is in inversion, the measured capacitance is the
series combination of the insulator and the semiconductor depletion layer,

G Cg
Cy = - 4-2
R (42)
The semiconductor capacitance is described by
AKg €,
T (4-3)
S Xd

where the depletion layer thickness for an inverted layer is

K¢ e op
Xy=2 2t (44)
aNy

where Kg is the dielectric constant of the semiconductor, Np is the net ionized dooant density
and ¢g is the potential difference between the Fermi level and the intrinsic Fermi le.~1. Finally,

Np

n;

¢|r = In

LS. 4-5)
q

if the semiconductor is not degenerate (the case of interest).

If the capacitance is measured with the semiconductor both in inversion and in
accumulation, Equations (4-2) through (4-5) can be solved iteratively for Np, and ¢;.. That is, op
can be guessed and the guess used in Equations (4-2) through (4-4) to calculate Np which can
then be substituted into Equation (4-5) to solve for ¢i:- The new value of ¢ can then be used
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to calculate Nyy. Since ¢y depends on N, only logarithmically, this procedure rapidly converges
to yield values for ¢ and Npy.

Under this program, a computer program has been developed which, when given Cy, G
and - Xy, computes Ky and Ny, This value for Np is then compared with the value measured

betore the insulator was deposited to check that inversion and accumulation of the semicon-
ductor surface were indeed obtained,

As the semiconductor surface is driven from accumulation to inversion by a bias voltage on
the gate metal, there is a point at which the bands in the semiconductor are flat (i.c., bent into
neither accumulation nor inversion). The bias voltage at which this occurs is of great significance
for both scientific and practical reasons.

It is known that the flat-band voltage,
X,

X
p(X) d(X) (4-6)
Xl

where @y is the difference in metal-semiconductor work functions, Qgg is the sheet charge at
the semiconductor-insulator interface, Cy is the insulator capacity, and p is the insulator charge
distribution. Since dyg 15 usually known, Vi is a measure of Qss and p. Thus, Vi gives
information concerning the insulator and its interface with the semiconductor,

The precise determination of Vig can be complicated in a device with a very large surface
state density. However, a good estimate of Vg can be made by simply comparing the measured
high frequency C-V curves with the theoretical curves for an ideal device with the same insulator
thickness, semiconductor substrate material, and doping. The translation of the experimental
curve along the voltage axis from the position of the ideal curve provides a measure of the shift
in V. ’

Practically speaking, one would like to operate un MOS device at modest voltages. This
requires Viy to be small. From this point of view, measuring Vg Is monitoring an important
device parameter. Morcover, from the device standpoint, one requires that Vig be constant
under repeated voltage cycling. Results from this type of measurcment were reported in the June
1973 semiannual technical report for this contract,??

Electrical measurements are also used to determine the density of fast interface states,
Thes states limit transfer efficiency in a CCD and contribute noise in other MOS devices.
Mcas: rements of interface state densities are much more difficult to perform and to analyze than
those previously discussed, and they require an insulator with very low leakage and high stability,
These measurements have received a great deal of attention recently in our program, and they
are discussed in detail below.

B. TEST FACILITIES

A considerable portion of our recent effort has been directed toward the development of a
probe station facility to be used in the characterization of the insulators. This station is now
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Figure 4-1. Block Diagram of the Instrumentation of the Test Station

operative for measuring (1) capacitance- voltage characteristics using the Boonton C-V meter at
| MHz, (2) capacitance-voltage and conductance. voltage characteristics from 50 Hz to 100 kHz
using a Princeton Applied Rescarch lock-in amplifier system, (3) current-voltage measurcments
for the determination of insulator leakage, (4) pulse capacitance measurements for use in
determining bulk minority carrier lifetimes in processed slices, (S) variable temperature operation
of any of the above measurements using liquid nitrogen cooling and an electronic feedback
control system which covers the temperature range from about 90 to S00°K. !t is now possible
to switch between these various measurements without removing the sample from the probe
station. Within the next month, a computer will be added to the data acquisition system which
will facilitate direct data input into the computer and detailed analysis by the computer.

The test instrument setup is relatively straightforward with the exception of the G-V and
C-V measurement facility. This portion of the test setup is centered around the phase-sensitive
detector (or lock-in amplifier) which is shown schematically in Figure 4-1. This system allows us
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to measure the C-V and G-V characteristics simultaneously. The device under test is connected to
a slowly swept dc bias voltage and a superimposed 10 mV rms signal from the reference
oscillator output of the PAR amplifier. The substrate terminal of the MIS capacitor is then
connected to the virtual ground input amplifier. Under these conditions, if the series resistance in
the measurement circuit is sufficiently low, the outputs of the quadrature channels of the phase
sensitive amplifiers are proportional G and wG, respectively. Series resistance in the measurement
circuit limits the minimum values of conductance which can be measured. Such resistance may
be in the input impedance of the current-to-voltage amplifier or in the bias network, or in the
MIS device itself. Thus, series resistance also limits the minimum value of surface state density
which can be measured accurately. Our system required the modification of the PAR equipment
to reduce the output impedance of the reference oscillator below 50 ohms while still providing
an adequate drive voltage for the measurement with no appreciable harmonic distortion. In most
cases, the series resistance in the substrate is the dominant source of resistance in our
measurements.

C. SURFACE STATE MEASUREMENTS

The density of fast interface states is a very important property to determine in any of the
MIS systems studies in this contract. We have devoted considerable effort in this area during this
last 6-month period. Some of the effort has involved the assembly of the G-V and C-V test
system and variable temperature apparatus. We have also taken C-V and G-V data on the
insulators fabricated in this program.

We have measured the G-V and C-V characteristics of Si-SiO,-Al devices as well, in order to
test the system and to develop the measurement and analysis techniques. The principal advantage
of the Si-SiO,-Al devices is their higher stability. In addition, their surface states have been
studied more extensively making possible comparison to previous work. However, we feel that
there is not yet an adequate general understanding of surface states even for the Si-SiO,
interface, so that these efforts have complemented our studies in the other semiconductor
insulator systems.

1. Analysis of Surface State Densities in Silicon
Following the procedures outlined by Nicollian and Goetzberger and Dueling, et al..** we

can assume the circuit models shown in Figure 4-3 apply to our devices when biased in
depletion. From the measured conductance, G,, and capacitance C m s We can calculate

G, G, /wC,
= = — (4-7)
WC, (G /wCy)* + (1 - C,/Cy)
G, b = C i,
= 1 (4-8)

C,  (Gp/wCy) +(1 - CplCy)?




C—V AND G-V CHARACTERISTICS OF
RF PLASMA ANODIZED GERMANIUM

r TEMPERATURE 190 K

FREQUENCY 6,0 KHZ
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Figure 4-2. C-V and G-V Characteristics of RF Plasma Anodized Germanium

The conductance, Gp, is related to surface state density by

qNSsA >x (- 22/202) + 2.2,-22
‘ exp(-— Z e (1 + wire )dZ (4-9)
wC’) (ox \/27! a 2wre

where Ngg is the dencity of surface states (cm™2 eV, q is the electronic charge, A is the area
of the device, 0? is the variance of the fluctuations in surface potential, z is the deviation trom
the average surface potential in units of kT/q, and v is the relaxation time for filling and
emptying the surface states lying with *kT/q of the surface potential corresponding to the

applied bias.

Gur general procedure is illustrated by an example of measurements and analysis on a
Si Si0; Al device. First, C-V and G-V data were obtained at a number of frequencies between
1CO Hz and 100 kHz as shown in Figure 4-4, From plots like Figure 4-3 we select a certain bias
voltage in the depletion region and read the corresponding values of C and G. Then Equation 4-7
and Equation 4-8 are used to determine the corresponding values of Gp(w) and Cp(w).
Figure 4-5, Gp(w)/wC, is plotted for this same device., Equation 4-9 is fiited to the experimental
data by adjusting the parameters Ngs, 0, 7 using a least squares fitting routine on a computer,
The resulting theoretical curve for this example is also shown in Figure 4-4. In this example, the
calculated values of the mode parameters are
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This particular device has a very low
surface state density which is near the lower
fimits of the resolution of our experimental
cquipment. When the surface state density is
this low, we find the ratio G/we to be on the order 1 X 1073 which makes very high demands
on the stability of the phase-sensitive detector. The effects of  series resistance in the
semiconductor also himit the accuracy of conductance measurements it high frequencies,

Figure 4-3. Equivalent Circuit for MIS Capacitor

2. Fast Interface State Measurements in Gc-AIOx-AI

The curves in Figure 4-2 represent C-V and GV d: ta which were obtained from an RI°
plasma wnodized Ge slice. These curves are also typical of data we have been obtaining from
deposited aluminum oxide on germanium. The hysteresis observed in these curves is a serious
problem in using these and other similar data for surface state density analysis. Another problem
arca in analyzing surface state densities on these devices is that of instabilities and hysteresis in
the G-V and G-V curves. In some devices variations in the amount of hysteresis are observed
from one measurement to the next. Also in some devices we see the who!z curve translate along
the voltage axis from one measurement to the next. Such instabilitics make it impossible to

ADMITTANCE (ARBITRARY UNITS)

-1.5 =1.0 -0.5 (o]

173580 GATE VOLTAGE

Figure 44, Typical C-V and G-V Characteristics of Al-SiO, -Si at 4.0 kHz
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Figure 4-5. Surface State Conductance Versus Frequency

correlate measurements at different frequencies at the same bias voltage as we require for the
{ analysis. However, we can still estimate from these data surface state densities in the midgap
region without knowing exactly what energy level and time constant (7) to associate with
measurement and without knowing the statistical fluctuations (o) of the surface potential. This
kind of estimate of surfuce state density based on magnitude of (Gp/w) maximum at 4 kHz and
i 190K leads to a value ~ 3 X 10" ¢m™? ¢V™! for the RF plasma anodized germanium slice
shown in Figure 4-2,

3. Insulator Electrical Instabilities

instabilities in our MIS structures. One possibility is the presence of highly mobile impurities in

the insulator. Such impurities would vary on different slices as we have obscrved. Presumably,

they could be eliminated with an appropriate step in the surface cleanup process before the

insulator is deposited or grown. Another possibility might be that there is charge injection irom

the semiconductor into slow trapping states within the insulator. Such states might be
i unavoidable in some of the insulators. On the other hand, it may be possible to eliminate them
i iIn some cases by means of appropriate annealing steps in controlled atmospheres. We are

currently investigating the effects of different cleanup procedures and annealing samples in gases
such as N, Hy, Oy, and argon in attempts to lower interface state densities and to determine
the feasibility of eliminating hysteresis and instabilitics.

| l At this point in the program, it is not possible to determine the cause of the hysteresis and
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SECTION Vv
CONCLUSIONS

During this contract period, considerable progress has been made in preparing the (Ga,In)As
samples, The dual-source reactor has produced graded alloys to help mateh the GaAs substrate to
the epitaxial alloy film grown on it, Optimization of this new system s still in progress.

Preparation of thin insulator films has heen done with reactive plasma depositions, plasma
anodization, and liquid anodization. All of these are low-temperature techniques which avoid the
problems associated  with high-temperature processing of (Ga,In)As. Many of the pinhole
problems in AlO, lave been solved by improved surface preparation techniques. Thus AlO,
appears to be the best overall insulator so far in this program. We are continuing to study the
plasma anodization scheme as it has produced promising but inconsistent results,

Our electrical characterization facilities arc now quite comprehensive. Complete electrical
characterizations of the insulators depends on achieving stable, low-leakage, and pinhole-free
films  factors which have not always allowed the determination of breakdown strengths und
surface state densities. The final phase of this program should provide more extensive electrical
data on our better insulating films.
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APPENDIX B

INSULATOR-SEMICONDUCTOR STRUCTURES
DELIVERED TO NVL FOR EVALUATION
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